Reg. No. : \square

Question Paper Code : 80762

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

First Semester
Civil Engineering MA 2111/MA 12/080030001 - MATHEMATICS - I

(Common to All Branches)
(Regulations 2008)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.

$$
\text { PART A - }(10 \times 2=20 \text { marks })
$$

1. If 3 and 6 are two eigen values of $A=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$, write down all the eigen values of A^{-1}.
2. Write down the quadratic form corresponding to the matrix $\left[\begin{array}{ccc}0 & 5 & -1 \\ 5 & 1 & 6 \\ -1 & 6 & 2\end{array}\right]$.
3. Find the equation of the tangent plane at the point $(1,1,-2)$ on the sphere $x^{2}+y^{2}+z^{2}-2 x-y-z-5=0$.
4. Obtain the equation of the right circular cone whose vertex is at the origin and semi-vertical angle is 45° and having y -axis as its axis.
5. Find the equation of the right circular cylinder whose axis is z -axis and radius is ' a '.
6. Find the envelope of the lines $x \operatorname{cosec} \theta-y \cot \theta=a, \theta$ being the parameter.
7. If $u=\frac{x+y}{x y}$ find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.
8. State Euler's theorem for homogeneous function.
9. Evaluate $\int_{0}^{\pi \sin \theta} \int_{0}^{\sin } r d r d \theta$.
10. Change the order of integration in $\int_{0}^{1} \int_{0}^{\sqrt[2]{x}} f(x, y) d y d x$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) If λ_{i} for $(i=1,2, \ldots, n)$ are the non-zero eigen values of A , then prove that (1) $k \lambda_{i}$ are the eigen values of $k A$, where k being anon-zero scalar; (2) $\frac{1}{\lambda_{i}}$ are the eigen values of A^{-1}.
(ii) Verify Cayley-Hamilton theorem for the matrix $\left[\begin{array}{ccc}2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2\end{array}\right]$ and hence find A^{-1} and A^{4}.

Or
(b) Reduce the quadratic form $x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 z x$ to canonical form through an orthogonal transformation. Write down the transformation.(16)
12. (a) (i) Find the equation of the smallest sphere which contains the circle given by the equations $x^{2}+y^{2}+z^{2}+2 x+4 y+6 z-11=0 \quad$ and $2 x+y+2 z+1=0$.
(ii) The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the axis in $A B$ and C, find the equation of the cone whose vertex is the origin and the guiding curve is the circle $A B C$.

Or
(b) (i) Find the centre and radius of the circle given by

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}-2 x-4 y-6 z-2=0 \text { and } x+2 y+2 z-20=0 . \tag{8}
\end{equation*}
$$

(ii) Find the equation of the right circular cylinder of radius 3 and whose axis is the line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{2}$.
13. (a) Find the equation of the circle of curvature of the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ at $\left(\frac{a}{4}, \frac{a}{4}\right)$.

Or

(b) Find the evolute of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
14. (a) (i) If $u=e^{x y}$, Show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{u}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right]$.
(ii) Test for the maxima and minima of the function $3 f(x, y)=x^{3} y^{2}(6-x-y)$.

Or
(b) (i) If $x=e^{u} \sin v, y=e^{u} \cos v$ and F is a function of x and y, then prove that $\frac{\partial^{2} F}{\partial x^{2}}+\frac{\partial^{2} F}{\partial y^{2}}=e^{-2 u}\left[\frac{\partial^{2} F}{\partial u^{2}}+\frac{\partial^{2} F}{\partial v^{2}}\right]$
(ii) If $x^{2}+y^{2}+z^{2}=r^{2}$, then Prove that the maximum and minimum values $y z+z x+x y$ are r^{2} and $\frac{-r^{2}}{2}$ respectively.
15. (a) (i) Evaluate $\iint x y d x d y$ over the region in the positive quadrant bounded by $\frac{x}{a}+\frac{y}{b}=1$.
(ii) Find the value of $\iiint x y z d x d y d z$ through the positive spherical octant for which $x^{2}+y^{2}+z^{2} \leq a^{2}$.

Or

(b) (i) Change the order of integration in $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} d y d x$ and hence evaluate it.
(ii) Evaluate, by changing to polar co-ordinates, the integral $\int_{0}^{4 a} \int_{\frac{y^{2}}{4 a}}^{y} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} d x d y$.

